

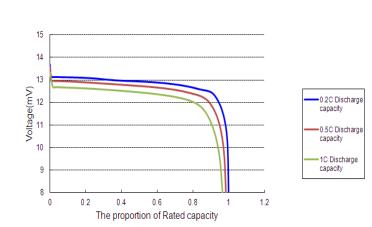
BATT-LFP-12-170

Lithium Iron Phosphate Battery

Renogy Lithium Iron Phosphate Battery is perfect for deep-cycle applications including electric vehicles, solar/wind energy system, UPS battery backup, telecommunication systems, medical equipment, and more.

pecifications			
Electric Characteristics	Nominal Voltage		12.8V
	Rated Capacity (170Ah	
	Minimal Rated Capac	165Ah	
	Energy		2176Wh
	Specific Energy		103.6Wh/kg
	Energy Density		149.1Wh/L
	Internal Resistance		≤30mΩ
	Cycle Life (0.2C, 20±5°C)		100% DOD 1500 cycles
Charging Parameters	Charge Voltage		14.4 ± 0.2V
	Maximum Charge Current		50A
	Charge Cut-off Vo	14.6V	
Discharging Parameters	Maximum Continuous Discharge Current		100A
	Discharge Cut-off Voltage		≥10V
Temperature Parameters	Operation Temperature Range (60±25% R.H.)	Charge	0~45°C
		Discharge	-10∼50°C
		Recommended	23±5 ℃
	Storage Temperature Range (60±25% R.H.)	Less than 1 year	0~25°C
		Less than 3 months	-5∼35℃
Mechanical Properties	Dimensions	Length	347±3mm
		Width	155±3mm
		Height	270±3mm

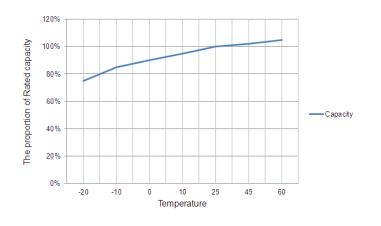
Renogy | www.renogy.com | techsupport@renogy.com | T: 909-287-7100 | F: 888-543-1164

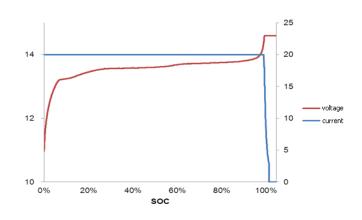

Weight	21kg
Housing Material	ABS+PC
Terminal Model	M12×14mm
Cell Model	IFR26650-3.4AH
Assembly Method	4S53P

Specification of Protection Circuit Module

Overvoltage Protection	Protection Voltage (Single Cell)		3.80±0.05V
	Delay Time		0.5∼2s
	Recovery Voltage (Single Cell)		3.50±0.05V
Under voltage Protection	Protection Voltage (Single Cell)		2.30±0.05V
	Recovery Voltage (Single Cell)		2.60±0.05V
Overcurrent Protection	Protection Current		150A
	Recovery Mechanism		Disconnect Load
Short-circuit Protection	Trigger Mechanism		External Short-circuit
	Delay Time		100∼400µs
	Recovery Mechanism		Disconnect Load
Over-temperature Protection	Charge	Protection Temperature	60℃
		Recovery Temperature	50℃
	Discharge	Protection Temperature	65℃
		Recovery Temperature	55 ℃

NOTE: Do NOT string this battery in series. It is made ONLY for parallel connections using identical batteries.


Rate Discharge Curve


Different DOD Cycle Life Curves

Gradient Discharge Curve

Charging Characteristics

Cycle Life Curve at 100% DOD

Maintenance and Cautions

- Avoid over-discharging batteries
- Charge the batteries with recommended voltages, ensure the battery can be fully charged
- Generally, recharge capacity should be 1.1 ~ 1.5 * the discharge capacity
- The effect of temperature on cycle charge voltage: -4 mV / °C / Cell
- Length of cycle services is significantly affected by <u>depth for discharge (primarily)</u>, along with ambient temperature, discharge rate, and the way the battery is recharged.

Note: Make sure to tightly screw the battery terminals in, having loose battery terminals will cause the terminals to build up heat resulting in damage to the battery.